Chemical Hydrogen Storage: Control of H₂ Release from Ammonia Borane

Tom Autrey, Anna Gutowska, Liyu Li, Maciej Gutowski, John Linehan.

Pacific Northwest National Laboratory

EERE Program Review 5/24/04

(This presentation does not contain any proprietary or confidential information)

Objectives

•Hypothesis: Nano phase hydrogen storage materials will have different thermodynamic and kinetic properties compared to bulk hydrogen storage materials.

Nano particles of Hydrogen Storage material

- -Control Reactivity (enhanced rate of H₂ release)
- -Control Selectivity (prevent Borazine formation)
- -Can we prevent fusion of the nanoparticles as the reaction proceeds? (Don't want to lose nano properties)

Use Mesoporous Scaffolds

Technical Barriers and Targets

On-board hydrogen storage for FC vehicles

Volumetric Density				
year	2010	2015		
KWh/liter	1.5	2.7		
MJ/liter	5.4	9.7		
gm/liter	45	81		

Gravimetric Density				
year	2010	2015		
KWh/kg	2	3		
MJ/kg	7.2	10.8		
gm/kg	60	90		

Operational temperature: -20 < °C < 80

Material with 9 wt% H_2 that releases $H_2 < 80^{\circ}$ C

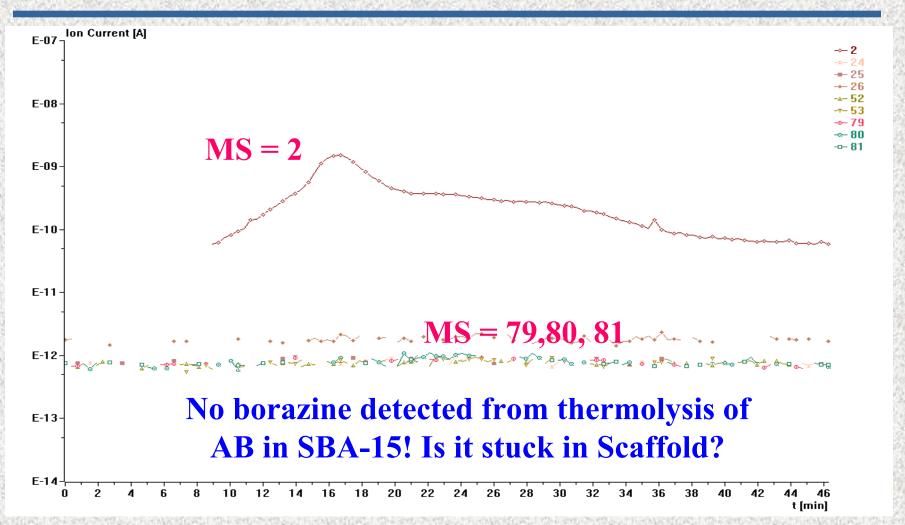
Approach: Nanophase BNH compounds

NH_xBH_x: Stores significant quantity of hydrogen (6 wt%/step)

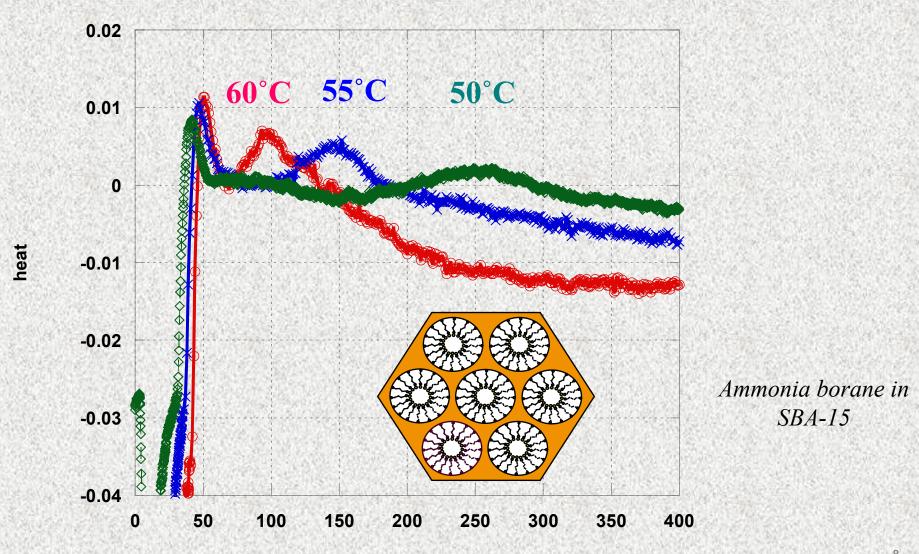
	Wt% H ₂	T (°C)
$NH_4BH_4 \rightarrow NH_3BH_3 + H_2$	6.1	<25
$NH_3BH_3 \rightarrow NH_2BH_2 + H_2$	6.5	<120
$NH_2BH_2 \rightarrow NHBH + H_2$	6.9	>120
NHBH \rightarrow BN + H ₂	7.3	>500

How does NH₃BH₃ embedded in a mesoporous scaffold compare to bulk NH₃BH₃?

- ▶ Minimize Borazine formation?
- Change Thermochemistry?
- ▶ Change kinetics?
- ► TEM/BET/EDX
 - Material Characterization (Surface area, porosity)
- ► DSC/MS (differential scanning calorimetry/mass spec)
 - Volatile products
 - Thermodynamics
 - Kinetics
- ► Solid State NMR ¹¹B
 - Product identity
 - Kinetics

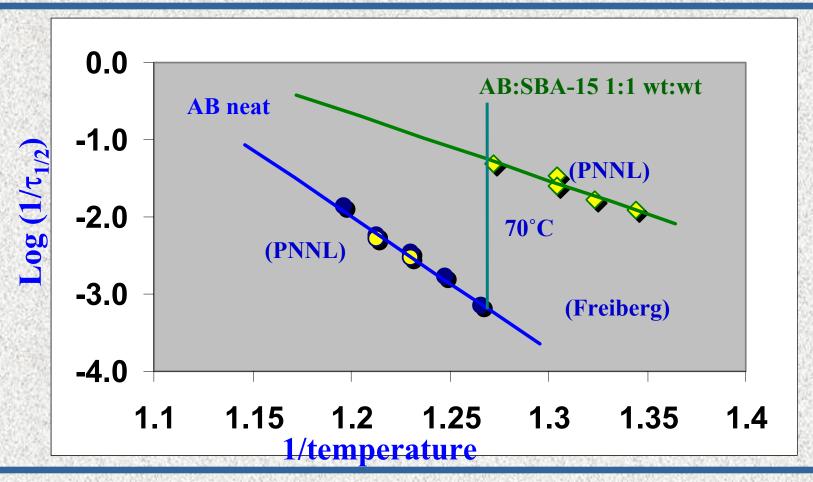

Project Safety

Use safe handling procedures as outlined by MSDS

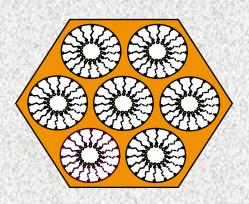

In experiments where hydrogen is released, large quantities of inert gas are used to avoid any build up in concentration of hydrogen.

Materials are treated with dilute acid at conclusion of experiments to destroy any residual hydrogen.

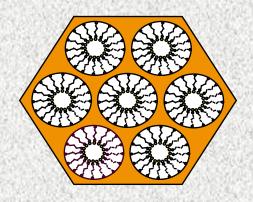
Volatile Products from NH₃BH₃ in Mesoporous scaffold



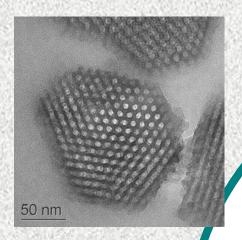
Increase the Temperature Increase the rate of H₂ release



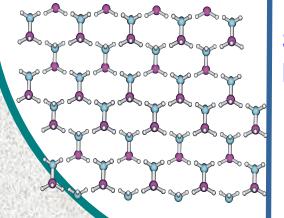
time (min)


Comparison of H₂ Release: AB versus mesoporous AB

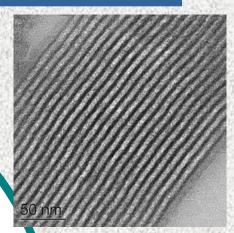
Rate of hydrogen release is 1 to 2 orders of magnitude faster with mesoporous scaffold



Summary


- ►H₂ release from NH₃BH₃ in Mesoporous scaffolds:
 - Control of selectivity of H₂ release from AB
 - SBA-15 appears to guide NH₃BH₃ towards linear polymer formation.
 - No borazine seen in volatile products or left behind in scaffold.
 - No cyclized products observed in NMR and DSC data show process is less exothermic
 - Control of reactivity for H₂ release from AB
 - 1-2 orders of magnitude faster!

Future Efforts



Vary pore diameter 60-300 nm
Coat nano particles (in vs. out)
Thin films (curvature)
Cover Si-OH (alkane)
More detailed kinetic studies

Surface interactions? Radius of curvature?

Collaborators

- Y Shin, S Li SBA-15
- C Wang TEM
- J Coleman SEM
- D Matson Synthesis
- J Fulton, Y Chen XAFS
- S Addleman G Fryxell Mesos
- S Smith, B Kay Kinetics
- W Shaw, C Yonker NMR

- R Williford Modeling
- V Viswanathan Fuel Cells
- G Whyatt Systems Eng
- **▶** K Peterson Hi Pressure
- ▶ N Baer purification
- J Franz, D Camaioni, D Schubert, L Sneddon, T Baker Chemistry

Acknowledgement

PNNL FY04 NanoScience & Technology Initiative